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M
edical scientists have always
sought to uncover fundamen-
tal mechanistic explanations
for human disease and to

use this information to predict patient
outcome and devise specific therapeutics.
Although monogenetic diseases have been
elucidated, the more common disorders
often have complex or heterogeneous ori-
gins and involve the failure of multiple
systems before disease is manifested.
Breast cancer is an example. Many factors
and genes have been implicated in the
initiation of the disease (e.g., BRCA1,
PTEN, P53, hormone exposure, irradia-
tion, free radicals, etc.), but mortality is
due to metastatic disease that requires
invasion, evasion of immune surveillance,
implantation in ectopic sites, continuous
replication, cell migration, and angio-
genesis (1). Capturing all of the genetic
components that support these cellular
processes has been a challenge for can-
cer cell biology.

The article by Chang et al. (2) in this
issue of PNAS is interesting and novel on
several fronts. First, it takes a mechanism-
driven approach to prognostic biomarker
discovery on a genome scale. Second, by
focusing on biological mechanisms in the
discovery process, Chang et al. have un-
covered the catalog of genes involved in a
potentially new cellular process that de-
fines the clinical biology of breast cancer.
Third, they have rendered these findings
applicable for clinical decision making.

Mechanistically derived candidate bio-
markers have been identified in the past,
and the approach is not new. Rather than
seeking biomolecules simply associated or
correlated with a clinical outcome, the
discovery process starts with a specific
biological process and then asks whether
perturbations of its components could
predict cancer phenotype. The identifica-
tion of the collection of mismatch repair
enzymes involved in hereditary nonpol-
yposis colon cancer (HNPCC) is an exam-
ple of a successful genomic discovery of
evolutionarily related mismatch repair
genes that were later confirmed as impor-
tant in carcinogenesis (3, 4).

The application of microarray platforms
to cancer biomarker discovery has used
the standard design of assessing the corre-
lations between individual gene expression
and clinical outcomes such as survival.
Biological plausibility of these candidate
genes is considered only in retrospect and

if a biochemical pathway is implicated (5,
6). By contrast, Chang and colleagues
started with a specific physiologic mecha-
nism, wound healing and its in vitro proxy,
serum response of cultured fibroblasts,
which they examined in exquisite detail in
refs. 7–9. The operational definition of
this expression response was genes that
are seen in 50 fibroblast cultures whose
expression changed after exposure to 10%
serum. When the cell cycle-associated
genes (10) were removed from this list,
512 core serum response (CSR) genes
were identified and were considered rep-
resentative of a ‘‘wound’’ signature. Using
this expression cassette that confidently
defines an in vitro core serum response,
they posited that such a coordinated tran-
scriptional cassette would have a role in
the clinical behavior of cancer because
migration and invasion are phenotypes
seen both in wound response and invasive
cancer. Their earlier work suggested that,
even after eliminating growth-associated
genes, the ‘‘activated’’ profile of the CSR
gene cassette would predict for worse out-
come in a variety of cancers.

The article by Chang et al. in this is-
sue of PNAS goes several steps further
to clinically operationalize this CSR
gene cassette (8). Although hierarchical
clustering can use the CSR genes to sep-
arate populations of tumors into prog-
nostic groups, this approach cannot be
applied to categorizing individual sam-
ples as would be necessary in the clini-
cal setting. To accomplish this sorting,
the authors developed a quantitative

scale (called correlation score of this
scalable wound signature) to assess how
close a tumor’s configuration resembled
the activated profile. A threshold for
this score can be selected for any sensi-
tivity and specificity desired (2). The
correlation score for the CSR gene cas-
sette was found to be an independent
variable in predicting survival when a
variety of clinical parameters were mea-
sured. In clinical breast cancer treat-
ment, the decision to treat with adjuvant
chemotherapy depends on the probabil-
ity of relapse as predicted by lymph
node status, tumor size, and histologic
grade. Several clinical guidelines taking
account of these parameters, such as the
National Institutes of Health or the St.
Gallen consensus criteria, are used in
clinical decision making (11). The
wound response correlation score out-
performed either consensus criteria in
properly selecting patients who would
not need adjuvant chemotherapy. More-
over, the combined application of two
array-based prognostic scores further
improved the ability to predict risk of
metastatic disease.

The authors cite this decision making as
a ‘‘bottom-up’’ approach that builds a
prognostic predictor from defined expres-
sion modules assigned to a specific patho-
genic mechanism. These guidelines are in

See companion article on page 3738.
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Fig. 1. Schematic of the top-down vs. the bottom-up biomarker discovery approaches.
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contrast to a ‘‘top-down’’ approach that
identifies a predictive expression cassette
by empiric association with disease out-
come and makes no mechanistic assump-
tions (Fig. 1). If, indeed, this model-based
bottom-up approach can be validated,
then it is conceivable that tumor pheno-
type can be devolved to several mecha-
nisms, each represented by specific
transcriptional profiles. That cellular
processes can be described (or even
driven) by the coordinate expression of
specific gene cassettes is clearly not a
new biological concept; however, the
ability to compute mathematically the
likely presence of these cassettes has
been a recent and welcomed contribu-
tion to the functional genomics field.

Community efforts such as the Alliance
for Cell Signaling have provided large-
scale expression data on specific cellular
states for quantitative modeling, which
were used to decipher the underlying dy-
namics of cellular regulatory networks
operative in B lymphocytes (12, 13).
Twelve major gene regulatory groups
linked to definable gene ontologies could
be abstracted into expression modules,
which are the starting ground for con-
structing the integrated network of signal-
ing pathways. This approach was used in
an integrated analysis of 1,975 published
microarrays encompassing 22 tumor types
that uncovered 456 statistically significant
expression modules (14). Certain modules
were associated with specific tumor types:
repression of a growth-inhibitory module
in acute lymphoblastic leukemia, repres-
sion of steroid catabolism module in hep-
atocellular carcinoma, and activation of an
osteoblastic module in breast cancer. Simi-
larly, Gene Set Enrichment Analysis
(GSEA) takes into account prior informa-
tion about gene relationships in pathways
in formulating association statistics.
Mootha et al. (15) analyzed microarray
data from diabetic muscle biopsies using
GSEA and discovered that a set of genes
involved in oxidative phosphorylation and
activated by PGC-1� are coordinately de-
creased in human diabetic muscle. Thus,

pathway inference through computational
strategies is progressively feasible and
valid.

An intriguing observation noted by
Chang et al. (2) was that the 70-gene
prognostic signature previously identified
and validated in breast cancer (5) had
minimal gene overlap with the CSR cas-
sette and the two independently predicted
for metastatic relapse in the same patient
cohort. This finding suggests that different
expression modules may independently
contribute to the tumor phenotype, and
we might expect more prognostic gene
sets, especially from a bottom-up ap-
proach. For example, some of the inde-
pendent cancer expression modules noted
above (14) or the metastasis expression
cassette (16) would be candidate modules

for testing as potential prognostic or pre-
dictive marker sets. Other important
cassettes to be explored might be cell
proliferation or tumor grade-associated
gene modules and pathway-specific mod-
ules, such as those induced by myc or p53
(L. Miller and E.T.L., unpublished data).

Finally, the work by Chang et al. (2)
provides a plausible thread that links the
putative transcriptional response in wound
healing with aggressive cancer behavior.
Although this relationship has been ob-
served on the macroscale level in clinical
conditions such as cirrhosis of the liver
and hepatocellular carcinoma, and in the
similarities between wound keratinocytes
and squamous cell carcinomas (17), the
ability to capture the potential universe of
specific genes operating in the two physio-

logic states (i.e., healing and cancer)
moves us closer to uncovering fundamen-
tal mechanisms contributing to the cancer
phenotype (1).

The technologies and, especially, the
analytical approaches described in Chang
et al. (2) and associated papers that are so
common today are truly revolutionary for
clinical medicine. The development of
HER-2 as a single biomarker in breast
cancer required �10 years from the first
publication for several confirmatory
studies of thousands of patients to be
completed and for controversies to be
resolved. The studies were usually con-
ducted in tandem, one marker at a time.
The identification of independent and
validated prognostic and predictive gene
sets accounting for 700–1,000 potential
biomarkers all came out in a period of
3–4 years. This dramatic truncation of
developmental time can be fundamentally
attributed to the availability of the human
genome sequence and the deposition of
the complete data sets of array data and
clinical information from these biomark-
ers studies in the public domain. The
genome sequence allowed for the devel-
opment of tools such as oligonucleotide
expression arrays, where the probes are all
computationally derived from the com-
plete sequence. The availability of tumor
array data for a number of breast cancer
studies with the associated clinical out-
comes has allowed for cross-validation of
biomarker cassettes through database in-
terrogations rather than generating an
entirely new clinical study from scratch
(18). Although confirmatory clinical stud-
ies designed to test a putative biomarker
cassette remain the gold standard, such
in silico-derived and database-enabled
cross-validations give confidence to clin-
ical trialists that there is a greater likeli-
hood for success in the biomarkers
presented to them for testing. All in all,
the work discussed herein augurs well
for the biomarker field.
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Different
expression modules
may independently

contribute to the tumor
phenotype.
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